Performance of Fuzzy ART neural network and hierarchical clustering for part–machine grouping based on operation sequences
نویسندگان
چکیده
The problem context for this study is one of identifying families of parts having a similar sequence of operations. This is a prerequisite for the implementation of cellular manufacturing, group technology, just-in-time manufacturing systems and for streamlining material flows in general. Given this problem context, this study develops an experimental procedure to compare the performance of a fuzzy ART neural network, a relatively recent neural network method, with the performance of traditional hierarchical clustering methods. For large, industry-type data sets, the fuzzy ART network, with the modifications proposed here, is capable of performance levels equal or superior to those of the widely used hierarchical clustering methods. However, like other ART networks, Fuzzy ART also results in category proliferation problems, an aspect that continues to require attention for ART networks. However, low execution times and superior solution quality make fuzzy ART a useful addition to the set of tools and techniques now available for group technology and design of cellular manufacturing systems.
منابع مشابه
Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملHybrid Fuzzy-ART based K-Means Clustering Methodology to Cellular Manufacturing Using Operational Time
This paper presents a new hybrid Fuzzy-ART based K-Means Clustering technique to solve the part machine grouping problem in cellular manufacturing systems considering operational time. The performance of the proposed technique is tested with problems from open literature and the results are compared to the existing clustering models such as simple Kmeans algorithm and modified ART1 algorithm us...
متن کاملConstructive Feedforward ART Clustering Networks—Part II
Part I of this paper defines the class of constructive unsupervised on-line learning simplified adaptive resonance theory (SART) clustering networks. Proposed instances of class SART are the symmetric Fuzzy ART (S-Fuzzy ART) and the Gaussian ART (GART) network. In Part II of our work, a third network belonging to class SART, termed fully self-organizing SART (FOSART), is presented and discussed...
متن کاملPhotometric clustering of regenerated plants of gladiolus by neural networks and its biological validation
Photometric clustering of regenerated plants of gladiolus was described using fuzzy adaptive resonance theory (ART) and the resultant grouping pattern was compared with ART 2, and self-organizing map (SOM) neural network modules. Classical clustering techniques such as hierarchical (HC) and k-means clustering (KM)were also applied to analyze the same data set to evaluate the performance of the ...
متن کاملInvestigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کامل